Рассмотрим характеристики некоторых чистых металлов и их сплавов. С целью предупреждения коррозии цветных металлов необходимо руководствоваться следующими основными положениями:
— не применять вместе различные материалы, поскольку возможно интенсивное развитие коррозии в результате образования макроэлементов;
— не допускать чрезмерно высокого нагрева металлических деталей, находящихся в контакте с водой, так как это может вызвать интенсивную коррозию в результате образования пар дифференциальной аэрации; нежелательны также местные изменения температуры;
— стараться избегать образования застойных зон, в которых происходит снижение концентрации кислорода в воде, так как это может привести к разрушению пассивирующей пленки и растворению токсичных металлов (Pb, Cu).
Коррозия алюминия
Этот металл, имеющий высокий отрицательный потенциал (—1,34 В), теоретически очень подвержен коррозии, но в действительности пассивируется в результате окисления влажным воздухом и образования защитной пленки оксида алюминия. Эту пассивацию можно вызвать искусственно анодным окислением.
Алюминий иногда применяют в морской воде при условии, что, во-первых, на нем не образуются отложения загрязнений, что приводит к возникновению катодных участков, и, во-вторых, применяется технически чистый алюминий. Алюминий можно использовать в слабо кислых водах, но его контакт со щелочными водами недопустим.
Коррозия меди
В воде, содержащей кислород, происходит естественная пассивация меди пленкой оксида меди CuO, которая имеет малую растворимость, но на практике может подвергаться сольватации в виде комплекса аммиаком или цианидами. Тем не менее эта окисная пленка в отличие от пленки, образующейся на алюминии, часто оказывается пористой, и поэтому при производстве и применении медных труб должны быть приняты меры предосторожности.
Сквозные изъязвления и питтинговая коррозия меди иногда наблюдаются в холодных минерализованных водах (питтинг типа I) и при использовании отожженных труб. Те же явления происходят в горячей воде с низким солесодержанием (питтинг типа II).
Коррозия свинца
Оксид свинца РЬО и гидроксид свинца РЬ(ОН)2 относительно растворимы. Поэтому все воды, содержащие кислород, очень коррозионны и опасны для свинца, кроме вод, которые одновременно имеют высокую бикарбонатную щелочность (выше 2,4 мг*экв/л) и малое содержание свободного диоксида углерода (pH немного выше 7). В этом случае может образовываться гидроксикарбонат, который характеризуется значительно меньшей растворимостью, чем гидроксид и, следовательно, защищает металл, если одновременно происходит осаждение карбоната кальция.
Однако в настоящее время рекомендуется ограничивать применение свинцовых труб для питьевого водоснабжения; и оно должно быть полностью исключено для мягкой воды.
Коррозия оцинкованной стали
Рассмотрим покрытия, полученные или электроосаждением цинка, или горячим цинкованием (погружением в ванну с цинком при температуре 450 °С или непрерывным процессом Sendzimir). В этом случае слой n-фазы переменной толщины прочно связан со сталью, а его внешняя поверхность окисляется с образованием гидроксида цинка, оксида или гидроксикарбоната в зависимости от температуры и щелочности воды. Пленка имеет очень сложную структуру и замедляет коррозию цинка торможением диффузии кислорода. Скорость коррозии, которая велика в мягкой воде, значительно уменьшается в водах, содержащих бикарбонат кальция.
Значительные концентрации хлоридов, особенно в щелочной среде, могут вызывать осаждение нерастворимых оксихлоридов, что одновременно увеличивает вероятность питтинговой коррозии.
Защитная пленка имеет более низкую электрическую проводимость, чем пленка, образующаяся на других металлах, и не изменяет потенциал цинка, поэтому действует скорее как лакокрасочное покрытие или растворимый анод, чем как пассивирующая пленка.
При высокой коррозионной активности воды и разрушении пленки цинк, который имеет высокий отрицательный потенциал (—0,776 В), подвергается ускоренной коррозии, заканчивающейся коррозией железа с образованием ржавчины.
Влияние температуры. Скорость коррозии резко возрастает с повышением температуры, достигает максимума при 60 °С и затем снижается до начального значения при 100 °С. При 60 °С все гидроксиды цинка превращаются в более пористый оксид, который имеет плохую адгезию с металлом и образует пленку с более положительным потенциалом, чем потенциал цинка. В результате полярность элемента «защитная пленка — железо» изменяется на противоположную. Это вызывает ускоренную сквозную коррозию незащищенной поверхности стали.
Действие меди. Появление ионов Cu2+ в растворе (экзогенная медь, попавшая в воду в систему выше по течению) повышает электрическую проводимость пленки оксида цинка и в результате скорость коррозии стали возрастает. Поэтому цинкование стали обеспечивает устойчивое замедление коррозии только в воде с низкой коррозионной активностью. При использовании оцинкованных труб в воде с высокой коррозионной активностью, и особенно в морской воде, следует иметь в виду временный характер защиты, которую обеспечивает цинкование.
Коррозия латуни
Латуни — это медно-цинковые со следующими стандартными составами):
Состав | Содержание, % | |||
меди | цинка | алюминия | олова | |
I | 70 | 29 | — | 1 |
II | 60 | 40 | — | — |
III | 76 | 22 | 2 | — |
Состав III рекомендуется использовать в морской воде.
Обесцинкование или растворение цинка с выделением остаточной Cu иногда происходит в латуни типа I и реже в других. Металл становится пористым и хрупким. Обесцинкование усиливается в присутствии солей и вызывает образование элементов, в которых латунь служит анодом, что приводит к быстрому разрушению сплава, которое может быть предотвращено наличием в сплаве мышьяка или сурьмы. В настоящее время имеются сорта латуни, применение которых позволяет решить эту проблему.